Cones are required for normal temporal responses to light of phase shifts and clock gene expression.

نویسندگان

  • Anna Dollet
  • Urs Albrecht
  • Howard M Cooper
  • Ouria Dkhissi-Benyahya
چکیده

In mammals, non-visual responses to light involve intrinsically photosensitive melanopsin-expressing retinal ganglion cells (ipRGCs) that receive synaptic inputs from rod and cone photoreceptors. Several studies have shown that cones also play a role in light entrainment, photic responses of the suprachiasmatic nucleus (SCN), pupil constriction, and sleep induction. These studies suggest that cones are mainly involved in the initial response to light, whereas melanopsin provides a sustained input for non-visual responses during continued light exposure. Based on this idea, we explored the effects of the absence of middle-wavelength (MW)-cones on the temporal responses of circadian behavior and clock gene expression in light. In mice lacking MW-cones, our results show a reduction in behavioral phase shifts in response to light stimulations of short duration at 480 and 530 nm, but no alteration for short-wavelength (360-nm) light exposures. Similarly, induction of the period gene mPer1 and mPer2 mRNAs in the SCN are attenuated in response to light exposures of mid to long wavelengths. Modeling of the photoresponses shows that mice lacking MW-cones have an overall reduction in sensitivity that increases with longer wavelengths. The differences in photic responsiveness are consistent with the idea that cones provide a strong initial phasic input to the circadian system at light-onset and may confer a priming effect on ipRGC responses to sub-threshold light exposures. In summary, the contribution of MW-cones is essential for the normal expression of phase shifts and clock gene induction by light in mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus

The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link betw...

متن کامل

Calbindin influences response to photic input in suprachiasmatic nucleus.

It is well known that light resets the circadian clock only at specific times of day. The mechanisms mediating such gating of environmental input to the CNS are not well understood. We show that calbindinD28K (CalB)-containing cells of the suprachiasmatic nucleus (SCN), which are directly retinorecipient, gate photic entrainment of cellular circadian oscillators and thereby determine the timing...

متن کامل

The Probiotic Bacteria Induce Apoptosis in Breast and Colon Cancer Cells: An Immunostimulatory Effect

Background: Uncontrolled cell proliferation and resistance to apoptosis are the main characteristics of cancer cells. Therefore, a substance with the capability to induce apoptosis in cancer cells could be known as an anti-cancer material. Probiotics are useful microorganisms that are crucial for the host’s health.Materials and Methods: In the present stu...

متن کامل

Microglia inflammatory responses are controlled by an intrinsic circadian clock.

The circadian system regulates many physiological functions including inflammatory responses. For example, mortality caused by lipopolysaccharide (LPS) injection varies depending on the time of immunostimulation in mammals. The effects of more subtle challenges on the immune system and cellular mechanisms underlying circadian differences in neuroinflammatory responses are not well understood. H...

متن کامل

Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus).

Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chronobiology international

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2010